
The Block Conjugate Gradient for Multiple Right Hand Sides
in a Direct Current Resistivity Inversion

Rowan Cockett
Department of Earth and Ocean Science

University of British Columbia
rcockett@eos.ubc.ca

Abstract

In geophysical applications direct current (DC) resistivity surveys are collected by injecting current
and recording voltage potentials over a field site of interest. These data sets can provide valuable
non-invasive images of the sub-surface. The optimization problem that arrises in producing these
images requires multiple solves of a linear system with numerous right hand sides (RHSs). Due to
the three dimensional nature of the DC resistivity problem, the system to solve is typically too large
for direct methods, and iterative methods must be used; in this case conjugate gradient (CG) is ideal.
However, standard iterative solvers have no way to share information between the different solves.
Information sharing techniques between the RHSs is necessary for speedy convergence and are why
direct methods are so attractive. Standard iterative solvers can be modified to block methods that
share information by solving multiple RHSs at once. The extension from CG to the corresponding
block method, block conjugate gradient (BLCG), is clearly laid out and practical implementation
issues are discussed. BLCG can have have numerical instabilities if linear dependencies exist be-
tween the different RHSs. This is dealt with through initial deflation and orthogonalization of the
RHSs and an unequal convergence scheme. Numerical experiments were ran and suggest that using
BLCG can have significant gains over using standard CG. These gains are most dramatic if initial
deflation of the RHSs is possible and enforced.

1 Introduction

A set of problems in geophysical applications involves the conversion of observational data into a predictive model that
feasibly creates those observations. These problems can be divided into two distinct elements: the forward problem
and the inverse problem. The forward problem simulates an observational data set given model parameters; this is
described mathematically by a partial differential equation. The inverse problem solves for feasible model parameters
given a sparse set of observational data. The inverse problem can be formed as an optimization problem and solved
iteratively. One specific context for this problem is in terms of the direct-current (DC) resistivity problem. In this
problem source electrodes inject current, and receiver electrodes measure the responding voltages. Many of these
measurements are taken at a field site of interest and the information is combined in a geophysical inversion to create
valuable images of the subsurface. The DC resistivity problem can be described mathematically using a discretized
version of Poisson’s equation with appropriate boundary conditions [1]. A set of linear systems is generated, A, which
can be very large due to the three dimensional nature of this problem. This system of equations must be solved
multiple times in an iterative optimization procedure. Additionally, the system of equations has multiple right hand
sides (RHSs) that relate to the source configurations of the survey. Generally, the more RHSs gathered the better the
results of the inversion; when direct methods are used to solve the system of equations the factorization can easily be
applied to these new RHSs with a forward and back solve. However, both the large and sparse nature of A commonly
leads to the use of iterative solvers. The information sharing techniques that are attractive in direct solvers are no
longer available and standard iterative solvers require each RHS to be solved individually.

1

To share information between the RHSs the standard iterative methods must be extended. There are two general ways
in which this can be done: (a) through a seed system where search spaces are recycled in the next solve, and (b)
through a block system solve. Since all RHSs in this application are known at the beginning of the solve it is typical
to use block methods [10]. In this paper these block methods are investigated in detail in the context of the conjugate
gradient algorithm.

2 Motivation - The DC Resistivity Problem

The motivation of this research is the direct current (DC) resistivity problem in geophysical applications. In this
experiment, electrodes are laid out over a field site of interest; source pairs (input at a known current) are sequentially
turned on and off and receiver pairs observe the responding voltage potentials. After many voltage measurements
have been made, they can be combined in a geophysical inversion to gain information about the conductivity of the
subsurface. The conductivity of the ground can be linked to physical parameters of interest. For example, pore-water
conductivity is greatly influenced by electrolytic contaminants, these contaminants can thus be imaged through their
electrical properties in a DC resistivity survey and appropriate actions can be taken [4]. The DC resistivity problem is
governed by Poisson’s equation with appropriate boundary conditions applied

∇ · (−σ∇φ) = I(δ(r− rs+)− δ(r− rs−)) (1)

where σ is the conductivity structure of a medium; φ is the electrical potential field induced by a dipole; and I is the
electrical current from a dipole. The dipole is represented by two dirac delta functions centered on the positive and
negative source locations (rs+ and rs− respectively) [1]; where r is a position vector. Neumann boundary conditions
are often applied at infinity or sufficiently far from the area of interest in a discretized model [5]. These boundary
conditions are representative of a field experiment where the site is unbounded.

2.1 Forward Problem

The generation of data given a conductivity model is called the forward problem; this can be completed by discretizing
the DC resistivity equation. In this paper a cell-centered, finite-volume mesh is implemented. In matrix notation
Equation 1 can be written:

Ddiag(Avem)Gx = b (2)

where D and G are matrix representations of the divergence and gradient operators; x is a vector containing the
potential difference field; and b contains the positive and negative source locations. Av averages the conductivity
values from cell-centers to cell-faces, and is included on the diagonal. The conductivity model of the medium, m,
is in log-conductivity, and is included via the exponential em. Choosing to work in log conductivity (a) enforces a
positivity constraint, and (b) allows for interpretations of the results in either conductivity or the inverse: resistivity.
The entire forward operator is dependent on the conductivity model and can be written

A(m)xi = bi (3)

Where the subscript denotes the ith source configuration in the survey; this equation must be solved for every RHS
of interest. Neumann boundary conditions were implemented in the forward operator; however, these boundary con-
ditions lead to a constant null space in the forward operator. The null space is removed by modifying cell A(1, 1) by
±1 to conform to the sign of that element [1]. It is noted that the data collected in any DC resistivity experiment is a
subset of the entire potential field, thus a projection matrix, P, is used to pick out these measured potentials

d(m) = Pxi = PA(m)−1bi (4)

These data, d(m), can now be directly compared to the observed data, dobs, generated for that same source config-
uration. In a DC-resistivity survey there are many RHSs to Equation 3, and each must be evaluated to compare with
the full observational dataset.

2.2 Inverse Problem

In a field experiment, data is collected in the interest of obtaining knowledge about the conductivity structure of the
subsurface; this is classified as the inverse problem. The DC resistivity inversion results in an unconstrained non-
linear optimization problem that is often underdetermined; that is, observational data is much fewer than the number

2

of model parameters [6]. Due to the inverse problem being underdetermined, a weighted regularization parameter is
generally added to the optimization problem and the two-part function is minimized

Φ(m) =

m∑
i=1

ρ(d(i)(m)− d
(i)
obs) +

β

2
‖Gw(m−mref)‖22 (5)

where the first term minimizes data-misfit between the generated data, d(m), and the observed data (dobs); ρ(·) is
the data objective function (often taken as ρ(·) = (·)2 to yield the sum of squares). Data is generated for each source
configuration, and the individual data-misfit terms are summed over the data corresponding to the m different right-
hand sides. The second term is a Tikhonov style term that controls model regularization with regard to a reference
model (mref) [7]. Gw is a combination of the gradient operator in Equation 2, which is sensitive to model flatness;
and the identity matrix, which is sensitive to model smallness. The optimization problem is solved using an iterative
method such as steepest descent or a quasi-Newton method [6]. Any method chosen, however, requires the computa-
tion of the gradient of the objective function; using a linearization about the current model, the gradient for one source
configuration has the form:

∇Φ(m) = JT∇ρ+ βGT
wGw(m−mref) (6)

Here J is the Jacobian of the objective function (∂d/∂m) and describes the sensitivity of data to changes in model
parameters. Note that this gradient must be computed once for each RHS. The Jacobian is a large and dense matrix,
and it is preferable to avoid explicitly forming the matrix to reduce memory costs. Haber [3] shows the Jacobian has
the form:

J = PA(m)−1(D diag(Gu)Av diag(em)) (7)

Using this expression for the Jacobian, it is seen that the full matrix J need not be formed explicitly, and only the effect
of this matrix on a vector is needed. Two functions are needed to calculate a matrix-vector product, one that calculates
J(v) and one that calculates JT(w) for some vectors v and w. It is noted that this formulation of J requires a linear
system involving A(m) to be solved for each RHS at every iteration of the optimization algorithm.

2.3 Multiple Right-Hand Sides

The DC-resistivity inversion requires solving a linear system with A(m) in the evaluation of the forward problem as
well as in the evaluation of the gradient. These linear systems must be completed with multiple RHSs and be computed
at every iteration of an optimization algorithm. Additionally, the objective function may require more than one solve
per iteration if line-search iterations are needed [8, 9]. To complicate matters, the system A(m) may be too large to
handle with direct methods such as LU decompositions or Cholesky factorizations. It is clear that this linear system
must be solved efficiently through the use of iterative methods.

3 Iterative Methods

Iterative methods allow for the computation of a linear system through a series of matrix vector products; unlike
direct methods, there is no need to compute a factorization of the matrix A. When computing the factorization A
is prohibitively expensive, as is the case when A is very large and sparse, iterative methods can be used to find the
solution of Ax = b. The appealing aspect of direct methods is their ability to share information between different
RHSs; a factorization of A is determined, and to evaluate a new RHS only one forward and back solve must be
completed. Information sharing between RHSs is not possible in standard iterative solvers and each RHS must be
evaluated individually. The extension of these standard methods to share information can be completed in two ways:
(a) seed systems and (b) block systems [10]. The seed system solves each RHS independently but stores information
from the solve to use in subsequent solves. As information about the system is accumulated the additional RHSs
converge to their solutions in fewer iterations [10]. In the block system all RHSs are solved at once, and information
about the different systems is shared between all RHSs as the system converges [11]. The block system requires that
all RHSs be known at the outset of the problem, while the seed system is generally used when all RHSs are not known
at the outset. In the DC resistivity problem the RHSs are the source configurations of the survey; thus, they are all
known at the outset and block methods are appropriate.

When A is sparse and symmetric positive definite, as is the case in this application, conjugate gradient is the iterative
method of choice due to its low memory requirements and exact convergence in a finite number of iterations [8].
Conjugate gradient is presented in Section 4 and then extended to the corresponding block method in Section 5.

3

Although only conjugate gradient is presented in this paper, it should be noted that block methods exist for all popular
iterative methods including minimum-residual (MINRES) for symmetric indefinite systems and generalized-minimum-
residual (GMRES) for non-symmetric systems [12, 13, 10, 14].

4 Conjugate Gradient

Since the matrix A is very large, sparse, and symmetric positive definite it is a candidate for the iterative method of
conjugate gradient (CG). CG relies on the positive definiteness of the system as it minimizes the objective function

φ(x) =
1

2
xTAx− xTb, (8)

which is a convex quadratic of the matrix A ∈ Rn×n, where x,b ∈ Rn are the solution vector and the RHS vector
respectively. The objective function (Equation 8) will only have a global minimum if the function is convex (i.e. A is
positive definite). The gradient of the objective function

∇φ(x) = Ax− b = r(x) (9)

can be seen to be equivalent to the residual (r ∈ Rn) of the original Equation 3. Additionally, it is clear that the
minimum of φ(·) will have a gradient of zero; thus solving Ax = b. An equivalent interpretation of CG is that it
minimizes the A-norm of the error

‖ek‖2A = eT
kAek = (x− xk)TA(x− xk) (10)

where each new solution iterate xk is contained in an expanding Krylov subspace

xk ∈ x0 + span
{

r0,Ar0, . . . ,Ak−1r0

}
(11)

The CG iteration is very similar to a gradient descent algorithm (see [8]) with the exception of the search direction
pk ∈ Rn.

xk+1 = xk + αkpk (12)
where the new approximate solution xk+1 is a linear combination of the previous iterate and a search direction pk.
The step-length αk is chosen such that is is the minimizer along the search direction pk; this is done by taking the
directional derivative of the objective function and equating it to zero:

pT
k∇φ(xk + αkpk) = pT

k(A(xk + αkpk)− b) = 0 (13a)

αk = − rT
kpk

pT
kApk

(13b)

The important difference between conjugate gradient and gradient descent is the choice of pk, which is chosen such
that the search direction comes from a set of non-zero A-conjugate vectors {p0,p1, . . . ,pk} where

pT
i Apj = 0,∀i 6= j. (14)

This choice of conjugacy has the outcome that the conjugate set is linearly independent and most importantly φ(·)
can be minimized exactly in n steps given exact arithmetic. The proof of this is laid out in several texts (e.g. [8, 12])
and is generated through the observation that x̃ will be the minimizer of φ(·) over the conjugate set if and only if
r(x̃)Tpi = 0,∀i = 0, 1, . . . , k − 1. It can be shown that this is the case:

rT
kpi = 0,∀i = 0, 1, . . . , k − 1 (15)

and that xk is the exact minimizer of φ(·) over the set

{x|x0 + span {p0,p1, . . .pk−1}} . (16)

As the conjugate set expands to the full space Rn it is seen that the iterate will be the global minimizer of the objective
function [8].

The construction of the conjugate set can be iteratively constructed by using the steepest descent direction, −∇φ(xk),
(equivalently the current residual, −rk) and the previous search direction pk−1.

pk = −rk + βkpk−1 (17)

4

where βk is chosen such that the new search direction is A-conjugate. This is completed by premultiplying Equation
17 by pT

k−1A and imposing the conjugacy constraint in Equation 14:

βk =
rT
kApk−1

pT
k−1Apk−1

(18)

From the previous equations, the standard Conjugate Gradient algorithm can be formed and is seen in Algorithm 1. It
is noted that the equations for updating αk, βk, and rk+1 appear to be different than stated; the new forms can be ob-
tained using Equations 15, 17. These rearrangements to the standard form of CG ensure only one matrix vector product
must be computed every iteration; additionally, this form allows for reuse of some dot products. Conjugate Gradient
allows for exact convergence to x∗ in exactly n iterations, however, an approximate solution below a given tolerance
is usually obtained in far fewer iterations. The exact convergence rates will depend on the eigenvalues of A, where
clustered eigenvalues hasten convergence [8]. Clustering of eigenvalues can be achieved through preconditioning of
A and modifying the CG algorithm to incorporate the preconditioning.

Algorithm 1 Standard Conjugate Gradient
Given x0

Set r0 ← Ax0 − b,p0 ← −r0, k ← 0
while rk 6= 0 do

αk ← rT
krk/p

T
kApk

xk+1 ← xk + αkpk

rk+1 ← rk + αkApk

βk+1 ← rT
k+1rk+1/r

T
krk

pk+1 ← −rk+1 + βk+1pk

k = k + 1
end while

5 Block Conjugate Gradient

The extension of CG from one RHS to many, where each RHS is a column of X, can be achieved through block
conjugate gradient (BLCG). The new equation to be solved can be written

AX = B (19a)

A

[| | |
x1 x2 . . . xm

| | |

]
=

[| | |
b1 b2 . . . bm

| | |

]
(19b)

where there are m RHSs to be solved. It is possible to again write this equation as a minimization problem of an
objective function

Φ(X) =

m∑
i=1

φi(xi) =

m∑
i=1

1

2
xT
i Axi − xT

i b (20)

Here, Φ(X) contains all the objective functions from the standard formulation of CG (Equation 8). It is simple to see
that the minimum of this function corresponds to the solution of Equation 19a if A is symmetric positive definite. The
gradient of this objective function has a similar form as before

∇Φ(X) = AX− B = [Ax1 − b1,Ax2 − b2, . . . ,Axm − bm] := R(X) (21)

where R(X) is defined as the block residual and R(Xk) is denoted Rk ∈ Rn×m. This is again equivalent to the
minimization of the A-norm of the error; however, here the Frobenius-norm is used (denoted || · ||F).∥∥(X− Xk)TA(X− Xk)

∥∥2
F

= trace[(X− Xk)TA(X− Xk)] (22)

where each new solution iterate Xk is contained in an expanding block-Krylov subspace

Xk ∈ X0 + span
{

R0,AR0, . . . ,Ak−1R0

}
(23)

5

The block-Krylov space is defined such that x
(i)
k (the ith column of Xk) can be a linear combination of all the Krylov

spaces created thus far

x
(i)
k ∈ x

(i)
0 +

m⋃
i=1

span
{

r
(i)
0 ,Ar

(i)
0 , . . . ,Ak−1r

(i)
0

}
(24)

where r
(i)
0 denotes the ith column of R0. This information sharing technique is the desirable aspect of BLCG. The

new approximate solution is updated through

Xk+1 = Xk + PkΛk (25)

where Pk ∈ Rn×m spans an m-dimensional search subspace; and Λk ∈ Rm×m is now a step-length matrix that
minimizes Φ(X) over the entire search space. The minimum of Φ(X) is found similarly to CG

∂Φ(Xk + PkΛk)

∂Λk
= PT

k(A(Xk + PkΛk)− B) = 0 (26a)

Λk = (PT
kAPk)−1PT

kRk (26b)

It is noted that the step-length matrix requires the solve of a linear system, implying that the columns of PT
kAPk must

be linearly independent; enforcing this linear independence will be discussed further in Section 6.

Similar to CG, the new search subspace is created from the current block residual and the previous search subspace

Pk = −Rk + Pk−1Ψk (27)

where Ψk ∈ Rm×m is chosen such that the next search space is A-conjugate to the current search space

PT
i APj = 0,∀i 6= j (28)

By premultiplying Equation 27 by PT
k−1A and enforcing A-conjugacy of the next search space, Ψk can be found to be

Ψk = (PT
k−1APk−1)−1PT

k−1ARk (29)

The coefficient matrix Ψk again requires an m × m linear system solve; and requires linear independence. By
combining the equations for BLCG an algorithm can be formed, and is laid out in Algorithm 2. Again, there are some
slight changes in the coefficient matrices to simplify such that only one product APk is required; these rearrangements
are the same as in CG but generalized to matrix form.

Algorithm 2 Block Conjugate Gradient - Basic
Given X0

Set R0 ← AX0 − B,P0 ← −R0, k ← 0
while Rk 6= 0 do

Λk ← (PT
kAPk)−1RT

kRk

Xk+1 ← Xk + PkΛk

Rk+1 ← Rk + APkΛk

Ψk+1 ← (RT
kRk)−1RT

k+1Rk+1

Pk+1 ← −Rk+1 + PkΨk+1

k = k + 1
end while

6 Deflation and Linear Independence

The linear independence of Pk and Rk must be maintained for the two linear solves in BLCG to be possible [15]. It
can be shown that, for each value of k, the ranks of Pk and Rk are equal [15].

span{P0,P1, . . . ,Pk} = span{R0,R1, . . . ,Rk} (30)

This is due the construction of Rk ∈ span{Rk−1,APk−1} and is shown in [15]. Monitoring of linear dependent
columns and subsequent removal of dependent columns of either Pk or Rk can be used to ensure that the two in-
verses are always defined. The process of reducing the number of RHSs to maintain linear independence is known as
deflation; this process can occur before the algorithm starts or at a later step.

6

6.1 Initial Deflation

Initial deflation occurs on R0 before the BLCG algorithm begins. Typically this is done through a rank-revealing QR
factorization involving column pivoting [10]. For example, if rank(R0) < m then the number of RHSs to be solved
can be reduced via initial deflation to rank(R0) RHSs.

R0 = AX0 − B = QR =

[| | | |
q1 q2 q3 q4

| | | |

] • • • • •• • • • • • • •
• • • • • • • •
• • • • • •

 (31)

In this small example, the number of RHSs to be solved has been reduced from 10 to 4 using an economy-QR
decomposition. Initial deflation is incorporated into BLCG (Algorithm 3) through an economy QR-decomposition
and the entire algorithm is competed on Q rather than on the full number of RHSs. This can be thought of as doing a
QR-decomposition of B

AX = B = QR, (32)
and then solving for X using Q only, and then post multiplying byR

X = A−1B = (A−1Q)R (33)
This is equivalent to the initial deflation described above (Equation 31) with an X0 of 0. Another special case that is
worth considering is when R0 has m identical columns; in this case the economy-QR decomposition reduces from m
RHSs to one. If this special case was handled by a standard CG algorithm, m RHSs would still have to be solved. It
is clear that using block methods can be extremely effective when deflation is possible.

6.2 Internal Deflation

Often when a linear system converges it is necessary to perform deflation inside the algorithm. The rank of Pk and
Rk can be monitored through a rank-revealing orthogonalization procedure; when linear dependencies are detected,
these dependent columns are removed from Xk, Rk, and Pk [16]. The dependent systems are treated separately from
the BLCG algorithm, and both are able to converge [12]. A special case that will result in the convergence of linear
systems is when the initial residual has the the form of a Krylov subspace.

R0 =

 | | | |
r1 Ar1 . . . Am−1r1
| | | |

 (34)

Although R0 may be full rank, and thus not be changed by initial deflation, after one iteration the first Krylov space
created, [R0,AR0], will only have a rank of m + 1. Column deflation must be completed on this new space for the
BLCG algorithm to continue. The chance of several systems converging at once in practical applications, however, is
small and does not always warrant the work required for the orthogonalization procedure.

6.3 Unequal Convergence

Another, algorithm presented by Feng et al. [17] allows for unequal convergence of the linear systems. In addition to
incorporating initial deflation, unequal convergence of the RHSs is addressed by individually calculating the l2-norm of
each column of R0 (Algorithm 3). If this norm is below a convergence tolerance, ε, then the entire column is removed
from Rk, Xk, and Pk. Computationally this removal is done through indexing, once a column has converged the index
is deleted and no more work is done to that column; at the end of the algorithm all columns can then be used. This
adaptive solution allows for the early convergence of some RHSs without introducing numerical instabilities. Although
this is not as robust as performing rank-revealing QR factorizations at every iteration, it performs well under mild
conditions, is faster, and works well in many applications [17]. Algorithm 3 will fail if linear dependencies arise before
convergence and more rigorous steps must be taken as outlined in Section 6.2. However, in practical applications these
rank-revealing orthogonalization steps are seldom necessary and are a waste of computational resources [18, 17].

7 Comparisons & Other Methods

Standard CG will converge exactly in n iterations given exact arithmetic; however, the iteration count will be much
smaller in practice to get an approximate solution [8]. The algorithm for BLCG will converge exactly in n/m iterations

7

Algorithm 3 Block Conjugate Gradient - Unequal Convergence
Given X0

Orthogonalize AX0 − B = QR
Set R0 ← Q,P0 ← −R0,X0 ← 0, k ← 0
for k = 0, 1, 2, . . . until convergence do

Λk ← (PT
kAPk)−1RT

kRk

Xk+1 ← Xk + PkΛk

Rk+1 ← Rk + APkΛk

if ||R(i)
k+1|| < ε then

exit vector i
end if
if all vectors have exited then

break
end if
Ψk+1 ← (RT

kRk)−1RT
k+1Rk+1

Pk+1 ← −Rk+1 + PkΨk+1

k = k + 1
end for
X ∗ = X0 + Xk+1R

given exact arithmetic and linear independence of Pk and Rk [15] [17]. This reduction of the iterations required comes
from the definition of the block-Krylov subspace that the iterates are generated from (Eq. 24), which is inherently
much larger than in CG. Although the number of iterations is significantly reduced in BLCG, the work per iteration
is increased due to the two linear solves. Additionally, the amount of memory is increased in BLCG from four length
n vectors in CG to four n ×m matrices in BLCG. In BLCG it is also possible to modify the matrix-vector products
for all the RHSs (APk) to run in parallel. Parallelization of the BLCG algorithm can lead to additional gains [15, 17].
If the number of RHSs is so large that the two m × m linear solves every iteration are prohibitive, the RHSs could
be broken into smaller sections and run with multiple BLCG algorithms (potentially in parallel). The biggest gains in
using BLCG come when deflation is possible and enforced [10].

The implementations of other block methods such as MINRES and GMRES have similar intricacies involving deflation
of the linear systems. In these methods, however, there is significantly more storage required. In MINRES, for example,
the three term recurrence in the standard version is extended to 2m + 1, where m is the number of RHSs. In both
GMRES and MINRES the single sub-diagonal in the least-squares problem is replaced by m sub-diagonals [19]. The
m sub-diagonals in the least squares problem are effectively dealt with by Householder reflections rather than Given’s
rotations that are the standard in the single RHS methods [20]. The extension of MINRES and GMRES to their
corresponding block methods is effective for systems that are symmetric indefinite or non-symmetric, respectively.
Again, as with all block methods, significant gains are only seen in these algorithms when it is possible to decrease
the size of the system significantly via deflation.

8 Numerical Experiments

A forward modelling code was written that implemented the DC resistivity problem (Equations 2-4) over a unit cube
with Neumann boundary conditions. The forward operators were tested for analytical potential fields with the appro-
priate boundary conditions. A series of electrode arrays (surveys) were written to produce and collect data from the
forward model; the survey used in this paper considered all receiver permutations in a grid on the top surface of the
model. It is noted that it is not possible experimentally to collect data at the same location as the source electrodes;
and these permutations of source-receiver pairs were not included.

8.1 Experimental Setup

The models used for this experiment were 16x16x16 with a survey grid spacing of 3 cells centered on the upper surface
of the model. There were a total of 25 electrodes, 300 source configurations, and 253 active measurements per source
dipole. This gave rise to 75 900 total measurements half of which are symmetric and likely would not have been

8

collected in a field experiment, but were collected in this numerical experiment. The forward operator A(m) has a
size of 4096× 4096, and is structurally identical to the standard Laplacian in three dimensions. The stopping criteria
in both the CG and BLCG algorithms is based on the relative residual and is set to 10−5. The relative residual must be
used in BLCG as conditioning of the solver deteriorates if excessive precision is required; the two linear system solves
inside the BLCG iteration tend to become ill-conditioned if precisions higher than approximately 10−7 are required.
All experiments using BLCG are completed with the implementation laid out in Algorithm 3.

8.2 Comparison of CG and BLCG

The CG algorithm was run for all 300 source configurations independently and compared to the cumulative run time
of theBLCG algorithm; the results for this experiment are seen in Figure 1. The CG algorithm took 450 seconds
(2.8 × 105 iterations) to complete the calculation of all the RHSs versus just 12 seconds (2.2 × 102 iterations) to
complete the calculation using BLCG. The matrix B for this experiment only had 24 independent columns even
though there were 300 different source configurations; thus, the economy QR decomposition significantly reduced
the size of the problem. Initial deflation produces 24 independent RHSs (down from 300), and explains the attractive
plateau in both the cumulative solve time in Figure 1(a) and the cumulative iteration count in Figure 1(b). In CG
both the iteration count and the solve time increase linearly with each new RHS to be solved, however, in BLCG
there are significant gains in solving the systems jointly. The iteration counts in BLCG also decrease dramatically as
information is added to the search space in the form of new RHSs; each CG solve took approximately 900 iterations
while BLCG decreased to half that number in just 5 iterations.

(a) Cumulative solve time in seconds per RHS (b) Cumulative number of iterations per RHS

Figure 1: Comparison of cumulative work required between CG and BLCG for 300 source configurations.

In addition to running the CG and BLCG algorithms on the 300 source configurations, they were also run on a random
RHS matrix (Figure 2). Using a random RHS matrix means that initial deflation is not possible, as all 300 vectors are
linearly independent. The plateau effect seen before in Figure 1 is no longer apparent, and the addition of new RHSs
means increased work for the BLCG solver. The CG algorithm solved the 300 random RHS vectors in 150 seconds
(3.0 × 105 iterations) verses the BLCG algorithm that solved the same 300 RHSs in just 8 seconds (32 iterations).
Although the gains made by BLCG are not as dramatic as when initial deflation can be implemented, the gains are still
significant. As the number of RHSs increased above 230 in the BLCG solver, numerical instabilities were present in
two linear system solves for Λk and Ψk. The ill-conditioning present caused the BLCG algorithm to take much longer
to converge, and in some cases it did not converge. This behaviour can be avoided by breaking up the number of RHSs
into smaller sections that are easily solved by BLCG; for example, doing two BLCG solves on 150 RHSs instead of
one with 300. This division could also be implemented in parallel, which would additionally increase performance.

9

(a) Cumulative solve time in seconds per RHS (b) Cumulative number of iterations per RHS

Figure 2: Comparison of cumulative work required between CG and BLCG for 300 random RHSs.

9 Discussion and Conclusions

The DC-resistivity inverse problem requires multiple solves of the linear system A(m) with numerous RHSs. The
linear system must be solved efficiently with a low memory footprint. Due to the very large and sparse nature of A, as
well as because it is symmetric positive-definite, conjugate gradient is an ideal iterative solver. However, in standard
CG there is no way to share information between RHSs; thus, all RHSs must be solved individually. In this paper
I have described and implemented a block conjugate gradient solver. The beneficial aspects to using this solver is
that information is shared between RHSs and the system converges to the solution faster and in fewer iterations. In
standard CG there is exact convergence in n iterations, BLCG has exact convergence in n/m iterations due to the
increased search space. A major hurdle for implementing BLCG is maintaining linear independence of the individual
systems. Initial deflation was used to combat dependencies between systems as well as to decrease the number of
RHSs to solve. Additionally, an unequal convergence scheme was implemented that monitored the individual systems
and removed them from BLCG when they converged. This unequal convergence scheme numerically stabilizes most
practical systems at no additional cost.

Numerical experiments were run using 300 source configurations (RHSs) from a synthetic DC resistivity. Due to the
source configurations sharing locations, the number of dependent vectors in B is much fewer than the number of source
configurations. The economy QR decomposition of B has a form very similar to Equation 31, with only 24 distinct
vectors in this case (much less than the initial 300 RHSs). This leads to significant deflation of the number of RHSs
to solve in BLCG and results in significant gains over CG. The fact that significant initial deflation is possible is not
an artifact of this particular experimental design; any DC resistivity survey shares physical electrode locations, thus
initial deflation of B will always be possible. Numerical experiments were also completed using a random RHS matrix
with 300 columns; here, due to the independence of the RHSs, initial deflation was not possible. However, BLCG
still significantly outperformed CG in both cumulative solve time and iteration count. Some numerical instabilities
exist when the number of RHSs is very large; in this case, initially breaking up the number of RHSs into two or more
sub-blocks can be beneficial.

Block methods of standard iterative solvers can greatly reduce both the number of iterations and the solve times of large
systems containing multiple RHSs. If initial deflation is possible and enforced the number of actual systems solved
can be dramatically reduced. In this paper, I have presented a cheap and effective way to implement block conjugate
gradient. It is clear that BLCG can be used to make significant gains when solving the DC resistivity problem.

10

Acknowledgments

Multiple conversations with Chen Grief were insightful and provided many avenues of research to explore. Eldad
Haber provided invaluable guidance on the discretization of the partial differential equation.

References
[1] Adam Pidlisecky, Eldad Haber, and Rosemary Knight. RESINVM3D : A 3D resistivity inversion package.

Geophysics, 72(2), 2007.
[2] Esben Auken and Anders Vest Christiansen. Layered and laterally constrained 2D inversion of resistivity data.

Geophysics, 69(3):752–761, 2004.
[3] Eldad Haber, U.M. Ascher, and D.W. Oldenburg. On optimization techniques for solving nonlinear inverse

problems. Inverse Problems, 16:1263–1280, 2000.
[4] William Daily, Abelardo Ramirez, and Andrew Binley. Electrical resistance tomography. The Leading Edge,

2:438–442, 2004.
[5] Eldad Haber. Computational Methods for Simulation Based Optimization. UBC Math, 2011.
[6] Richard C Aster, Brian Borchers, and Clifford Thurber. Parameter Estimation and Inverse Problems. Elsevier

Inc., 2004.
[7] A.N. Tikhonov and V.Y. Arsenin. Solutions of Ill-Posed Problems. W.H. Winston and Sons., 1977.
[8] Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer, New York, NY, 1999.
[9] Larry Armijo. Minimization Of Functions Having Lipschitz Continuous First Partial Derivatives. Pacific Journal

of Mathematics, 16(1):1–3, 1966.
[10] Martin H Gutknecht. Block Krylov Space Methods For Linear Systems With Multiple Right-Hand Sides: An

Introduction. In A.H. Siddiqi, I.S. Duff, and O. Christensen, editors, Modern Mathematical Models, Methods
and Algorithms for Real World Systems, pages 420–447. Anamaya Publishers, New Delhi, India, 2007.

[11] A A Nikishin and A. Yu. Yeremin. Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive
Definite Linear Systems on Parallel Computers, I: General Iterative Scheme. SIAM Journal on Matrix Analysis
and Applications, 16(4):1135–1153, 1995.

[12] Anne Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, January 1997.
[13] Axel Ruhe. Implementation Aspects of Band Lanczos Algorithms for Computation of Eigenvalues of Large

Sparse Symmetric Matrices. Mathematics of Computation, 33(146):680–687, 1979.
[14] V. Simoncini and E. Gallopoulos. An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand

Sides. SIAM J. Sci. Comput., 16(4):917–933, 1995.
[15] Dianne P. O’Leary. Parallel implementation of the block conjugate gradient algorithm. Parallel Computing,

5:127–139, 1987.
[16] Dianne P. O’Leary. The Block ConJugate Gradlent Algorlthm and Related Methods. Linear Algebra and its

Applications, 29:293–322, 1980.
[17] Y T Feng, D R J Owen, and D Peric. A block conjugate gradient method applied to linear systems with multiple

right-hand sides. Computer Methods in Applied Mechanics and Engineering, 127(1-4):203–215, 1995.
[18] J.F. McCarthy. Block-conjugate-gradient method. The American Physical Society, 40(6):2149–2152, 1989.
[19] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2000.
[20] Martin H. Gutknecht and Thomas Schmelzer. Updating the QR decomposition of block tridiagonal and block

Hessenberg matrices. Applied Numerical Mathematics, 58(6):871–883, June 2008.

11

