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Abstract

In geophysical applications direct current (DC) resistivity surveys are collected by injecting current
and recording voltage potentials over a field site of interest. These data sets can provide valuable
non-invasive images of the sub-surface. To create these images, a minimization problem between
model-generated data and observed data is solved. Data is generated through forward modelling and
then compared to the observed data in an inversion process. In this paper, both the forward modelling
and inversion of the DC resistivity problem are implemented and investigated. A two part objective
function, containing data-misfit and model regularization terms, is used in the minimization. The
effect of the objective function is investigated through the use of three different functions: (1) the
l2-norm; (2) the l1-norm; and (3) the Student’s t-distribution. Synthetic data is produced from a
simple conductivity model and various types of random noise are added to the data. Inversions of
this synthetic data are presented and indicate that the objective function chosen has a significant
effect on the inversion result. Results suggest that the l1-norm and the Student’s t-distribution are
more robust in the face different levels of Gaussian noise, which are considered outliers by the l2-
norm. It is concluded that consideration should be given to the choice of objective function and that
this choice should be guided by a priori information about the data noise.

1 Introduction

A set of problems in geophysical applications involves the conversion of observational data into a predictive model that
feasibly creates those observations. These problems can be divided into two distinct elements: the forward problem
and the inverse problem. The forward problem simulates an observational data set given model parameters; this is
described mathematically by a partial differential equation. The inverse problem solves for feasible model parameters
given a sparse set of observational data.

One specific context for this problem is in terms of the direct-current (DC) resistivity problem. In this experiment,
electrodes are laid out over a field site of interest; source pairs (input at a known current) are sequentially turned on
and off and receiver pairs observe the responding voltage potentials. After many voltage measurements have been
made, they can be combined in a geophysical inversion to gain information about the conductivity of the subsurface.
The conductivity of the ground can be linked to physical parameters of interest. For example, pore-water conductivity
is greatly influenced by electrolytic contaminants, these contaminants can thus be imaged through their electrical
properties in a DC resistivity survey and appropriate actions can be taken [1]. The context of this paper is solving the
optimization problem that arises from the geophysical inverse problem for DC resistivity.

Due to the nature of a relatively sparse data set, the DC resistivity problem is underdetermined and a two part objective
function is minimized containing both a data-misfit term and a model regularization term [2]. Although many forms
are available for use in these objective functions, the l2-norm is commonly used throughout the literature without
exploring alternatives (e.g. [3] [4] [5]). In this paper the form of the data-objective function is explored through the
use of three different objective functions: (1) the l2-norm, (2) the l1-norm, and (3) the Student’s t-distribution.
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Using a forward modelling code for the DC resistivity equation, it is possible to generate synthetic data from simple
models and then invert the synthetic data to recreate that model by minimizing data-misfit. Different perturbations can
be added to the model, generally in the form of block conductivity changes, to investigate how sensitive the inversion
process is to different types of changes. In this paper, the different objective functions are tested with respect to
robustness to noise levels and the recovery of the block conductivity perturbations.

2 Forward Problem & Discretization

The DC resistivity problem is governed by Poisson’s equation with appropriate boundary conditions applied

∇ · (−σ∇φ) = I(δ(r− rs+)− δ(r− rs−)) (1)

where σ is the conductivity structure of a medium; φ is the electrical potential field induced by a dipole; and I is the
electrical current from a dipole. The dipole is represented by two dirac delta functions centered on the positive and
negative source locations (rs+ and rs− respectively) [3]; where r is a position vector. Neumann boundary conditions
are often applied at infinity or sufficiently far from the area of interest in a discretized model [6]. These boundary
conditions are representative of a field experiment where the site is unbounded.

In this paper a cell-centered, finite-volume mesh was written to discretize the DC resistivity equation, in matrix notation
Equation 1 can be written:

Ddiag(Ave
m)Gu = q (2)

where D and G are matrix representations of the divergence and gradient operators; u is a vector containing the
potential difference field; and q contains the positive and negative source locations. Av averages the conductivity
values from cell-centers to cell-faces, and is included on the diagonal. The conductivity model of the medium, m,
is in log-conductivity, and is included via the exponential em. Choosing to work in log conductivity (a) enforces a
positivity constraint, and (b) allows for interpretations of the results in either conductivity or the inverse: resistivity.
The entire forward operator is dependent on the conductivity model and can be written

A(m)u = q (3)

where u is a vector that contains the potential field induced by the source configuration in q. Neumann boundary
conditions were implemented in the forward operator; however, these boundary conditions lead to a constant null
space in the forward operator. The null space is removed by modifying cell A(1, 1) by ±1 to conform to the sign of
that element [3]. It is noted that the data collected in any DC resistivity experiment is a subset of the entire potential
field, thus a projection matrix, P, is used to pick out these measured potentials

d(m) = Pu = PA(m)−1q (4)

These data, d(m), can now be directly compared to the observed data, dobs, generated for that same source configu-
ration. In a DC-resistivity survey there are generally many right-hand sides to Equation 3, and each must be evaluated
to compare with the full observational dataset.

3 Objective Function

The DC resistivity inversion results in an unconstrained non-linear optimization problem that is often underdetermined;
that is, observational data is much fewer than the number of model parameters. Due to the inverse problem being
underdetermined, a weighted regularization parameter is generally added to the optimization problem and the two-part
function is minimized

Φ(m) =

n∑
i=1

ρ(d(i)(m)− d
(i)
obs) +

β

2
‖Gw(m−mref )‖22 (5)

where the first term minimizes data-misfit between the generated data, d(m), and the observed data (dobs); ρ(·) is
the data objective function (often taken as ρ(·) = (·)2 to yield the sum of squares). Data is generated for each source
configuration, and the individual data-misfit terms are summed over the data corresponding to the n different right-
hand sides. The second term is a Tikhonov style term that controls model regularization with regard to a reference
model (mref ) [7]. Gw is a combination of the gradient operator in Equation 2, which is sensitive to model flatness; and
the identity matrix, which is sensitive to model smallness. Both flatness and smallness are with respect to mref . The
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gradient can be weighted in different directions to create anisotropic regularization; for example, less regularization
in the z-axis direction than other axes. β is a regularization parameter that balances the inversion between minimizing
data-misfit and model regularization. In place of model smallness, a depth weighting term can be introduced that
decreases regularization weight with depth. Depth weighting can be very important if all data is taken on the surface
but it is of interest to know what the conductivity structure is at depth. The depth weighting term can replace the
identity matrix in Gw and has the form:

Wd = diag((Z(:) + z)−v) (6)

where Z(:) is a unwrapped matrix that indicates the depth value of all model cells (z increases with depth); z0 is
the initial depth; and v is a parameter that controls the magnitude of the depth weighting. The calculated vector is
placed on the diagonal of Wd. A v of zero causes Wd to revert to the identity and act solely as a smallness term.
It is clear that regularization can play an important role in the construction of the objective function. The inclusion
of a priori knowledge into the DC resistivity inversion can be completed by adjusting parameters such as mref to
include the background conductivity or adjusting flatness regularization in different directions to agree with geologic
assumptions.

To deal with the non-linear aspect of this problem, the objective function can be linearized about the current model [3]

Φ(m) =

n∑
i=1

ρ

((
d(i) +

∂d(i)

∂m
· ∂m

)
− d

(i)
obs

)
+

β

2
‖Gw(m−mref )‖22 (7)

The gradient and Hessian of the objective function using this linearization, for one source configuration, are:

∇Φ(m) = JT∇ρ+ βGT
wGw(m−mref ) = g (8)

∇2Φ(m) = JT∇2ρJ + βGT
wGw = H (9)

Here J is the Jacobian of the objective function (∂d/∂m) and describes the sensitivity of data to changes in model
parameters. Note that this gradient must be computed once for each right-hand side. The Jacobian is a large and
dense matrix, and it is preferable to avoid explicitly forming the matrix to reduce memory costs. Haber [5] shows the
Jacobian in this problem has the form:

J = PA−1(D diag(Gu)Av diag(em)) (10)

Using this expression for the Jacobian, it is seen that the full matrix J need not be formed explicitly, and only the effect
of this matrix on a vector is needed. Two functions are needed to calculate a matrix-vector product, one that calculates
J(v) and one that calculates JT(w) for some vectors v and w. Both of these functions require three parts, J(v) can
be calculated through

z = (D diag(Gu)Av diag(em))v (11a)
Ax = z (11b)

J(v) = Px (11c)
where the vector is first multiplied sequentially by all operators in Equation 11a to obtain a new vector z. A linear
system with A is then solved for x, here the explicit inverse of A is not necessary and may be solved with an iterative
solver rather than a direct solver if necessary. The vector x is then multiplied by the projection matrix P to yield
J(v). A similar process is used for calculating JT(w). The accuracy of this function can be tested by computing
wTJ(v) and comparing it to vTJT(w); the results of this adjoint test should be identical. It is noted that computing
the Jacobian in this form requires solving a linear system with A (Equation 11b) and computing this many times to
high accuracy could be computationally prohibitive.

3.1 Data Objective Function

Three data objective functions ρ(ri) are explored in this paper, where ri is the ith data residual (d(i)
m − d

(i)
obs): (a) the

l2-norm, which results in the sum of squares in Equation 5; (b) the l1-norm; and (c) the Student’s t-distribution.

ρ2(ri) =
1

2
rTi ri (12a)

ρ1(ri) =
√

rTi ri + ε (12b)

3



ρt(ri) = log(1 + rTi ri) (12c)
In the l1-norm ε is some small positive constant to allow for differentiability at zero. This approximation of the true
absolute value function does not significantly change the results of the inversion as the errors introduced are small in
regards to other modelling and regularization errors. The statistical interpretation of these three objective functions
can be considered through “tail-heaviness” of the error distribution [8]. As seen in Figure 1 the l2-norm is the most
sensitive to outliers, as they are not expected in Gaussian noise modelling [8]. The l1-norm is usually chosen as
a robust approach to outlying data, such that they do not have a disproportionate effect on the inverse solution [9].
Another robust approach is to use the Student’s t-distribution to model error noise [8]. Care must be taken with the
Student’s t-distribution as this function is non-convex; however, in this non-linear inversion, convexity is unlikely.

Figure 1: Penalties of three objective functions (Equations 12a - 12c).

3.2 Data Weighting

The magnitude of the data varies by an order of magnitude or more, thus when fitting with the objective function it
is necessary to change the weight of the inversion so that it is equally sensitive to large and small data if they are
valid. This data weighting is done by adding a weighting matrix to the data residual (d(i)

m − d
(i)
obs), for example in the

least-squares objective function:

Φ(m) =

n∑
i=1

∥∥∥W(i)(d(i)(m)− d
(i)
obs)

∥∥∥2
2

+
β

2
‖Gw(m−mref )‖22 (13)

Where W(i) is a diagonal weighting matrix that is multiplied by the ith residual vector:

W(i) = diag

 1∣∣∣d(i)
obs

∣∣∣ · SD(d
(i)
obs) + ε

 , for i = 1, 2, . . . , n (14)

where SD(d
(i)
obs) is the element wise standard deviation of each data; ε is a small positive constant that ensures a cut-

off value so an extremely large weight is not given to very low amplitude data. This operation is done element wise on
the vector d(i)

obs corresponding to one right-hand-side vector qi; the result is placed on the diagonal of the weighting
matrix W(i). A unique weighting matrix is necessary for each right-hand side, as seen in Equation 13. The standard
deviation of data is often unknown in a field situation and is assumed to be 2-3% of the data [6]. The weighting matrix
multiplies the residual in the data objective function, and must also be included in the gradient and Hessian.

4 Minimization

A Newton update of the form of H∂m = −g can be obtained by combining Equations 8 and 9. For the least squares
data objective function the Newton update has the form

(JTJ + βGT
wGw)∂m = −(JT(PA−1q− dobs) + βGT

wGw(m−mref )) (15)
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Although J does not need to be explicitly formed, every product involves the solution of the linear system involving A
(Equation 11b). Solving this system could become prohibitively expensive if a high tolerance solution is required [3].
Additionally, because the Hessian is a very large and dense matrix, solving for the model update, ∂m, is expensive.
To address these numerical difficulties a quasi-Newton approach was taken using a limited memory BFGS update to
incorporate changes in gradient information into an approximation of the Hessian [10]. In limited memory BFGS only
a certain number of previous gradients are held in memory and incorporated into the search direction for any given
iteration. The limited memory BFGS algorithm requires an initial Hessian H0; commonly this is set to the identity. In
this application the initial Hessian was set to:

H0 = GT
wGw (16)

Setting the initial Hessian to the regularization term of the true Hessian helps to combat some issues of scaling as the
discretization gets finer [6].

4.1 Line Search

After a model update, ∂m, is found, it is incorporated into the current model by

mk+1 = mk + αk∂m (17)

where αk is the current line search parameter and mk+1 is the new model. The line search parameter is used to control
the magnitude of the update. The update must be scaled appropriately so as not to violate the linearization about the
current model. Additionally, αk is systematically decreased such that a sufficient decrease in the objective function is
obtained. The sufficient decrease is enforced by a backtracking Armijo line search [11] where αk is decreased until
the following inequality is satisfied

Φ(mk+1 + αk∂m) ≥ Φ(mk) + c1αkg
T∂m (18)

where c1 is a constant usually chosen to be quite small (e.g. 10−4) [6] [3]; g is the gradient of the function. This
inequality is evaluated iteratively decreasing αk by a constant c2 each time the inequality is not satisfied; c2 is generally
chosen to be between 0.4 and 0.8, with higher values indicating a finer line search and requiring more evaluations of
the objective function [12]. Evaluation of the objective function is expensive, and an extensive line search should be
avoided. To combat excessive line search iterations, adaptive scaling of the model update is implemented. A maximum
model update based on ||∂m||∞ is chosen, if the model update is larger than this tolerance, it is scaled back. The model
update tolerance is increased by a factor of two, to a maximum of one, if no line search iterations are required. The
update tolerance is decrease by a factor of 3/4 if more than one line search iteration is needed. The adaptive scaling of
the model update leads to fewer iterations in the line search routine. Typically, between 0 and 2 line search iterations
were needed with a maximum of around 4. Additionally, without this adaptive scaling technique, the model update
can be too large and violate the linearity assumption in Equation 7 leading to problems in evaluating the objective
function.

It is noted that although a BFGS update is used, Wolfe conditions were not implemented, although they are theo-
retically required [12]. Enforcing the Wolfe conditions requires more evaluations of the objective function, which is
expensive. Additionally, in this application it was found that these additional conditions were unnecessary when the
inverse problem converged to a reasonable solution; unreasonable solutions were characterized by over-fitting of the
data, and were fixed by adding more regularization in the objective function.

4.2 Stopping Criteria

The minimization procedure is repeated with a new linearization until either the norm of the gradient falls below a
certain tolerance, or the maximum number of iterations have been exhausted. Values for these stopping criteria are
often problem dependent [3]. Running synthetic models that have elements similar to observed data can often give
insight into appropriate stopping criteria [2]. A stopping criteria that can be used effectively is the absolute size of the
model step [6]. Monitoring the step size can be used to cut-off an inversion when negligible progress is being made.
If the updates being added to the model are orders of magnitude smaller than the magnitude of the features of interest,
this additional model structure is not of use. The inversions converged in 30-50 iterations using these stopping criteria.
Additionally, as discussed briefly in Section 4.1, scaling can be an issue in the gradient of the function, so using it as a
valid stopping criteria can be difficult. Testing stopping criteria on synthetic models where the true solution is known,
as in this paper, is the best way to understand what stopping criteria to use.
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5 Experimental Setup

A forward modelling code was written that implemented Equations 2-4 over a unit cube with Neumann boundary
conditions. The forward operators were tested for analytical potential fields with the appropriate boundary conditions.
A series of electrode arrays (surveys) were written to produce and collect data from the forward model; the survey
used in this paper considered all receiver permutations in a grid on the top surface of the model. It is noted that it is
not possible experimentally to collect data at the same location as the source electrodes; although these configurations
were programmed, the standard deviation of the data was set to infinity in Equation 14 and W

(i)
j,j = 0 so this residual

was not included in the objective function.

Figure 2: True model used for creation of synthetic data; showing locations of survey electrodes and conductivity
values of block perturbations in log-conductivity.

5.1 Model & Data Setup

The models used for this experiment were 16x16x16 with the survey grid spacing of 3 cells centered on the upper
surface of the model (Figure 2). There were a total of 25 electrodes, 300 source configurations, and 253 active
measurements per source dipole. This gave rise to 75 900 total measurements half of which are symmetric and likely
would not have been collected in a field experiment, but were collected in this numerical experiment. The test model
had a constant conductivity of 10−2Sm−1 and contained two block perturbations seen in Figure 2. The entire model
is presented in 16 sub-blocks that show horizontal depth slices. The top left sub-block is the top most horizontal slice,
and all sources and receivers are located in this layer; depth increases going left to right and then continues on the next
row. The true model contains two blocks of differing conductivity, the resistive block has a conductivity of 10−4Sm−1
(log conductivity of -9.2103) and is shown in blue in Figure 2. The conductive block has a conductivity of 100Sm−1
(log conductivity of 0) and is shown in red in Figure 2. Both the conductive and resistive block perturbations have a
size of 5x5x3, but the resistive block is one cell closer to the surface as well as overlaps the conductive block by one
cell (Figure 2).

Data was produced from the forward operator using the true model, and random Gaussian noise was subsequently
added. The standard deviation of this noise varied from 0% (true data) to 2%. To test the different objective functions,
additional spurious noise was added to some data sets. This spurious noise type adds additional Gaussian noise with a
standard deviation of 25% to a random subset of the data. Three data-sets with differing noise levels were generated
using the model in Figure 2: data with no noise, data with 2% random noise added, and data with 2% noise as well as
20% of the data with spurious noise. These data sets will be referred to as data with no noise, 2% noise, and spurious
noise. In the following experiments data weighting in Equation 14 was assumed to be 2% regardless of the noise levels
in the data.
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Table 1: Recovered average conductivity for the resistive and the conductive block for three different noise levels,
all values are in log conductivity. The true conductive block has a value of 0, and the resistive block has a value of
-9.2103.

No Noise 2% Noise Spurious Noise
Objective Function Conductive Resistive Conductive Resistive Conductive Resistive

l2-norm -2.3631 -6.4601 -2.4002 -6.3991 -2.9646 -6.0689

l1-norm -2.6804 -6.0715 -2.4448 -6.1217 -2.7754 -5.9339

Student’s t-dist. -2.4815 -6.0001 -2.5179 -5.8983 -2.6081 -5.9072

5.2 Regularization Setup

The regularization parameters used influence the inversion results substantially and must be selected carefully. The
operator Gw contains the gradient in the x, y, and z directions as well as a depth weighting term. The relative
magnitude of these sub-operators was chosen to be the same in the x, y, and z directions with the depth weighting
term having twice the relative magnitude of the other flatness terms. The regularization parameters in the depth
weighting term were chosen as z0 = 1 and v = π; this gave a weighting difference of one order of magnitude between
the top and bottom of the model. These regularization parameters were experimented with thoroughly, and the values
reported represent regularizations that produced the best results. The magnitude of the entire regularization objective
function is controlled by β in Equation 5. The regularization parameter was selected by varying β between 10−1

and 104, running the inversion for 50 iterations on a 9x9x9 model and plotting the data objective function against the
regularization objective function; this analysis produces a L-shaped trade-off curve between data misfit and model
regularization. The region of maximum positive curvature was visually chosen for each objective function yielding β
values of 101, 100.5, and 100.5, for the l2-norm, l1-norm, and Student’s t-distribution respectively. These values of β
were used as an initial guess for subsequent inversion, and were varied up to an order of magnitude on either side. The
reference model used in the regularization was a homogeneous model containing the background conductivity of the
model (10−2Sm−1).

6 Results

Data is produced from the true model (Figure 2) and three noise levels are added to the data: no noise, 2% noise,
and spurious noise. The inversion was run for each of these data sets using the three objective functions, the l2-norm,
the l1-norm, and the Students t-distribution. The inversions for the spurious noise data set are seen in Figure 3 and
are visually similar to the inversions of data sets with other noise levels. In Figure 3a the inversion for the l2-norm
is shown in full, and can be compared to the true model in Figure 2; only the top 8 horizontal layers of the l1-norm
and the Student’s t-distribution inversions are shown for comparison to the l2-norm inversion. As seen in the inversion
results, both the conductive and resistive blocks are recovered by the various inversions. It is noted that the blocks are
smoothed as a result of the regularization applied. The smoothing results in a conservative estimate of the magnitudes
of both the resistive and conductive blocks (i.e. values closer to the reference model). The location of the block in the
horizontal plane is well constrained by the inversion; however, in the depth axis there is considerably more smoothing
and regularization. This result is consistent with the layout of the survey electrodes that are in the horizontal plane;
no data is collected in the depth axis. All inversions placed the most conductive cell in the fourth horizontal slice,
which is in the middle of the conductive block of the true model; a similar result was found with the resistive block,
with the inversions finding the most resistive cell in the third horizontal slice. All of the models also found that the top
horizontal layer of the model had no significant perturbations from the background conductivity. The inversion with
the Student’s t-distribution as the objective function consistently had the best estimates of this first layer.

To compare the inversions quantitatively the average log conductivity value was found where the true model contained
the block perturbation; both the conductive and resistive blocks were averaged for all inversions and are recorded in
Table 1. The values of log conductivity can be compared to the true values of 0 for the conductive block and -9.2103
for the resistive block. It is seen that the l2-norm produces averages closer to the true log-conductivity values for the
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Figure 3: Inversion results in log conductivity for the data set with spurious noise using three objective functions: (a)
the l2-norm, (b) the l1-norm, and (c) the Student’s t-distribution.

inversions of data with no noise and with 2% noise. However, when spurious noise was added to the data, the l2-
norm no longer outperformed the l1-norm and Student’s t-distribution. With spurious noise in the inversion the robust
objective functions produced better averages than the l2-norm of the conductive block and very similar averages of
the resistive block. Inversions of other models with the same noise levels introduced into the data produced similar
results; with the l2-norm providing the closest average estimates to the true conductivity for low levels of gaussian
noise. When spurious noise is introduced into the data sets the robust data objective functions outperform the l2-norm.

7 Conclusions & Future Work

In this paper, I have implemented a forward modelling DC resistivity code to create synthetic data. In the imple-
mentation of the geophysical inversion significant care is placed on memory-constraints by not explicitly forming the
sensitivity matrix J. Additionally, the line-search implemented allows for an adaptive technique to deal with a scaled
gradient as well as minimizing the number of iterations required by the line search. The synthetic data was inverted
to produce models comparable to the true model. Block perturbations in the true model were well constrained by
the inversion in the horizontal plane. However, there was significant regularization introduced in the depth axis by
the inversions; this is due to the nature of the survey design that resides only on the top surface of the model. More
optimal survey designs that collect information at depth as well as on the surface of the model could be used to better
constrain the z-dimension of anomalies.

The inversions were completed with three different objective functions. Results suggest that the robust object functions
(l1-norm and Student’s t-distribution) produced better results than the standard l2-norm in the synthetic experiments
that contain significantly different levels of Gaussian noise. The objective function as well as the regularization
parameters have a large effect on the inversion results and can be guided through the use of a priori information about
data noise. It is recommended that various objective functions be considered in these geophysical inversions, as their
implementation is simple but significant improvements in inversion results could be observed.
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