
Dimensions of EM
Abstract¶
Electromagnetic (EM) methods are used to characterize the electrical conductivity distribution of the earth. EM geophysical surveys are increasingly being simulated and inverted in 3D, due in part to computational advances. However, the availability of computational resources does not invalidate the use of lower dimensional formulations and methods, which can be useful depending on the geological complexity as well as the survey geometry. Due to their computational speed, simulations in 1D or 2D can also be used to quickly gain geologic insight. For example, this insight can be used in an EM inversion starting with a 1D inversion, then building higher dimensionality into the model progressively. As such, we require a set of tools that allow a geophysicists to easily explore various model dimensionalities, such as 1D, 2D, and 3D, in the EM inversion. In this study, we suggest a mapping methodology that transforms the inversion model to a physical property for use in the forward simulations. Using this general methodology, we apply an EM inversion to a suite of models in one, two, and three dimensions, and suggest the importance of choosing an appropriate model space based on the goal of the EM inversion.
Full Paper¶

Moving between dimensions in electromagnetic inversions

Reflecting on creating tools for technical communication.

UCalgary Geosicence - Friday Afternoon Talk Series

Podcast with Matt Hall and Graham Ganssle

A framework for geophysical inversions with application to vadose zone parameter estimation

A framework for simulation and inversion in electromagnetics

Exploring nonlinear inversions: A 1D magnetotelluric example